Wednesday 9 August 2017

Modelos De Média Móvel Autorregressiva Linear


Glarma: Modelos médios em movimento variável autoregressivo linear generalizado com várias distribuições Descrição A função glarma é usada para se ajustar a modelos de média móvel autoadressiva linear generalizada com várias distribuições (Poisson, binômio, binômio negativo) usando resíduos de Pearson ou resíduos de pontuação e para a distribuição binomial, Resíduos de identidade. Também estima os parâmetros do modelo GLARMA com várias distribuições usando a pontuação Fisher ou a iteração Newton-Raphson. Para Poisson e distribuições negativas de resposta binomial, o link de log é atualmente usado. Para respostas binomiais, o link logit é usado atualmente. Vetor numérico a variável de resposta. Se a variável de resposta for para o modelo com a distribuição binomial, deve ser uma matriz n por 2, uma coluna é o número de sucessos e outra é o número de falhas. Matricular as variáveis ​​explicativas. Um vetor de uns deve ser adicionado à matriz de dados como a primeira coluna para o beta da interceptação. NULL ou um vetor numérico de comprimento igual ao número de casos. Usado para especificar um componente conhecido a priori a ser incluído no preditor linear durante a montagem. Numérico, a tolerância para o reconhecimento de números, que são menores que a tolerância especificada, como zero. Os modelos para glarma são especificados simbolicamente. Um modelo típico tem a forma y (resposta), X (termos) onde y é o vetor de contagem ou fator de resposta, X é uma série de termos que especifica um preditor linear para a resposta. Note-se que a primeira coluna de X deve ser um vetor de 1s como a intercepção no modelo. Quatro parâmetros iniciais que precisam ser estimados são combinados em delta (beta, phi, theta, alfa). Onde alpha é um parâmetro opcional para acomodar o modelo binomial negativo. Observe que na função glm. nb da embalagem MASS. Este parâmetro é chamado theta. Para Poisson e distribuições negativas de resposta binomial, o link de log é atualmente usado. Para respostas binomiais, o link logit é usado atualmente. Os modelos de média móvel auto-regressiva linear generalizada são calculados da seguinte forma. O preditor linear para a resposta é log (mut) Wt transpose (Xt) beta offset Zt. A média móvel infinita do preditor linear é a soma Zt (resíduos gama (t-i)). Esta média móvel infinita, é calculada usando as recursões de média móvel autorregressiva Zt phi1 (Z (t-1) e (t-1)). Phip (Z e (t-p)) theta1 e. Thetaq e onde p e q são as ordens de phi e theta, respectivamente, e os atrasos não-zero dos vetores phi e theta podem ser especificados pelo usuário através dos argumentos phiLag e thetaLag. Existem dois tipos de resíduos que podem ser usados ​​em cada recursão, resíduos de Pearson ou resíduos de pontuação e, além disso, para a distribuição binomial, podem ser usados ​​resíduos de identidade. A média móvel infinita, Zt. Depende do tipo de resíduos utilizados, assim como os parâmetros finais obtidos a partir do filtro. A padronização das contagens observadas passadas é necessária para evitar a instabilidade, portanto, o usuário deve escolher o tipo apropriado de resíduos dependendo da situação. O método de estimação para os parâmetros implementados na função visa maximizar a probabilidade do log por um método iterativo a partir dos valores iniciais adequadamente escolhidos para os parâmetros. A partir de valores iniciais, o chapéu delta (0) para o vetor de atualizações de parâmetros é obtido usando as iterações delta (k1) delta (k) Omega (deltak) primeira derivada de log (deltak) onde Omega (delta hat (k)) é algum Matriz escolhida adequadamente. As iterações continuam para k gt 1 até a convergência ser atingida ou o número de iterações k atinge um limite máximo especificado pelo usuário nas iterações máximas, caso em que elas vão parar. O critério de convergência usado em nossa implementação é aquele baseado em eta. O máximo de valores absolutos das primeiras derivadas. Quando eta é menor que um valor especificado pelo usuário, as iterações param. Existem dois métodos de otimização da probabilidade, Newton-Raphson e Fisher pontuação. O método utilizado é especificado pelo método do argumento. Deve-se notar que se o valor inicial para os parâmetros não for escolhido bem, a otimização da probabilidade pode não convergir. É necessário um cuidado ao montar as especificações misturadas do ARMA porque existe potencial para os parâmetros AR e MA não serem identificáveis ​​se as ordens p e q forem muito grandes. A falta de identificabilidade manifesta-se no algoritmo para otimizar a probabilidade de falhar em convergir e ou o hessian sendo singular, verificando as mensagens de aviso e os códigos de erro de convergência. O resumo da função (ou seja, summary. glarma) pode ser usado para obter ou imprimir um resumo dos resultados. As funções de acessório genérico coef (ie coef. glarma), logLik (ie logLik. glarma), instaladas (ie fitted. glarma), resíduos (ie residuals. glarma), nobs (ie nobs. glarma), model. frame (ou seja, modelo. frame. glarma) e extractAIC (ou seja, extractAIC. glarma) pode ser usado para extrair várias características úteis do valor retornado pelo glarma. O glarma retorna um objeto de classe glarma com componentes: 4.2 Modelos estacionários lineares para séries temporais, onde a variável aleatória é chamada de inovação porque representa a parte da variável observada que é imprevisível dado os valores passados. O modelo geral (4.4) assume que é a saída de um filtro linear que transforma as inovações passadas, ou seja, é um processo linear. Este pressuposto de linearidade é baseado no teorema de decomposição de Wolds (Wold 1938) que diz que qualquer processo discreto de covariância estacionária pode ser expresso como a soma de dois processos não correlacionados, onde é puramente determinista e é um processo puramente indeterminista que pode ser escrito como linear Soma do processo de inovação: onde é uma seqüência de variáveis ​​aleatórias não correlacionadas em série com média zero e variância comum. A condição é necessária para a estacionararia. A formulação (4.4) é uma reparametrização finita da representação infinita (4.5) - (4.6) com constante. Geralmente, é escrito em termos do operador de lag definido por, que dá uma expressão mais curta: onde os polinômios do operador de atraso e são chamados de polinômio e polinômio, respectivamente. Para evitar a redundância de parâmetros, assumimos que não existem fatores comuns entre os componentes e os componentes. Em seguida, estudaremos o enredo de algumas séries temporais geradas por modelos estacionários com o objetivo de determinar os principais padrões de sua evolução temporal. A Figura 4.2 inclui duas séries geradas a partir dos seguintes processos estacionários computados por meio do gencher quantlet: Figura 4.2: séries temporais geradas por modelos Como esperado, ambas as séries temporais se movem em torno de um nível constante sem alterações de variação devido à propriedade estacionária. Além disso, esse nível é próximo ao meio teórico do processo, e a distância de cada ponto para esse valor é muito raramente fora dos limites. Além disso, a evolução da série mostra as saídas locais da média do processo, que é conhecido como o comportamento de reversão médio que caracteriza as séries temporais estacionárias. Vamos estudar com algum detalhe as propriedades dos diferentes processos, em particular, a função de autocovariância que captura as propriedades dinâmicas de um processo estocástico estacionário. Esta função depende das unidades de medida, de modo que a medida usual do grau de linearidade entre as variáveis ​​é o coeficiente de correlação. No caso de processos estacionários, o coeficiente de autocorrelação no lag, denotado por, é definido como a correlação entre e: Assim, a função de autocorrelação (ACF) é a função de autocovariância padronizada pela variância. As propriedades do ACF são: Dada a propriedade de simetria (4.10), o ACF geralmente é representado por meio de um gráfico de barras nos atrasos não negativos que se chama correlograma simples. Outra ferramenta útil para descrever a dinâmica de um processo estacionário é a função de autocorrelação parcial (PACF). O coeficiente de autocorrelação parcial em lag mede a associação linear entre e ajustado para os efeitos dos valores intermediários. Portanto, é apenas o coeficiente no modelo de regressão linear: as propriedades do PACF são equivalentes às da ACF (4.8) - (4.10) e é fácil provar isso (Box e Jenkins, 1976). Como o ACF, a função de autocorrelação parcial não depende das unidades de medida e é representada por meio de um gráfico de barras nos atrasos não negativos que se chama correlograma parcial. As propriedades dinâmicas de cada modelo estacionário determinam uma forma particular dos correlogramas. Além disso, pode-se mostrar que, para qualquer processo estacionário, ambas as funções, ACF e PACF, aproximam-se de zero à medida que o atraso tende para o infinito. Os modelos nem sempre são processos estacionários, pelo que é necessário primeiro determinar as condições de estacionaridade. Existem subclasses de modelos que possuem propriedades especiais para estudá-las separadamente. Assim, quando e, é um processo de ruído branco. Quando, é um processo de ordem média móvel puro. , E quando é um processo autoregressivo puro de ordem. . 4.2.1 Processo de ruído branco O modelo mais simples é um processo de ruído branco, onde é uma seqüência de variáveis ​​médias zero não correlacionadas com variação constante. É denotado por. Esse processo é estacionário se sua variância for finita, já que: verifica condições (4.1) - (4.3). Além disso, não está correlacionado ao longo do tempo, então a função de autocovariância é: a Figura 4.7 mostra duas séries temporais simuladas geradas a partir de processos com média e parâmetros zero e -0,7, respectivamente. O parâmetro autorregressivo mede a persistência de eventos passados ​​nos valores atuais. Por exemplo, se um choque positivo (ou negativo) afeta positivamente (ou negativamente) por um período de tempo maior, maior o valor de. Quando, a série se move mais grosseiramente em torno da média devido à alternância na direção do efeito de, isto é, um choque que afeta positivamente no momento, tem efeitos negativos sobre, positivos. O processo é sempre inversível e está parado quando o parâmetro do modelo é constrangido para ficar na região. Para provar a condição estacionária, primeiro escrevemos a forma média móvel por substituição recursiva de (4.14): Figura 4.8: correlogramas de população para processos, ou seja, é uma soma ponderada de inovações passadas. Os pesos dependem do valor do parâmetro: quando, (ou), a influência de uma determinada inovação aumenta (ou diminui) ao longo do tempo. Levando expectativas para (4.15) para calcular a média do processo, obtemos: Dado que, o resultado é uma soma de termos infinitos que converge para todo o valor somente se, nesse caso. Um problema semelhante aparece quando calculamos o segundo momento. A prova pode ser simplificada assumindo que, isto é,. Então, a variância é: novamente, a variância vai para o infinito, exceto para, nesse caso. É fácil verificar que tanto a média quanto a variância explodem quando essa condição não se mantém. A função de autocovariância de um processo estacionário é, portanto, a função de autocorrelação para o modelo estacionário é: ou seja, o correlograma mostra uma decomposição exponencial com valores positivos sempre se for positivo e com oscilações positivas negativas se for negativo (ver figura 4.8). Além disso, a taxa de decadência diminui à medida que aumenta, portanto, quanto maior o valor, maior será a correlação dinâmica no processo. Finalmente, há um corte na função de autocorrelação parcial no primeiro intervalo. Figura 4.9: correlogramas da população para os processos Pode-se mostrar que o processo geral (Box e Jenkins 1976): é estacionário somente se as raízes da equação característica do polinômio estiverem fora do círculo da unidade. A média de um modelo estacionário é. É sempre inversível para qualquer valor dos parâmetros. Sua ACF vai para zero de forma exponencial quando as raízes são reais ou com flutuações de onda de seno-cosseno quando elas são complexas. Seu PACF tem um corte no atraso, ou seja. Alguns exemplos de Os correlogramas para modelos mais complexos, como o, podem ser vistos na figura 4.9. Eles são muito semelhantes aos padrões quando os processos têm raízes reais, mas tomam uma forma muito diferente quando as raízes são complexas (veja o primeiro par de gráficos da figura 4.9). 4.2.4 Modelo Médio Autoregressivo O modelo médio de ordens autoregressivas de ordem geral (ordem finita), é: Introdução ao ARIMA: modelos não-sazonais. Equação de previsão ARIMA (p, d, q): os modelos ARIMA são, em teoria, os mais Classe geral de modelos para prever uma série de tempo que pode ser feita para ser 8220stationary8221 por diferenciação (se necessário), talvez em conjunção com transformações não-lineares, como registro ou desinflação (se necessário). Uma variável aleatória que é uma série temporal é estacionária se suas propriedades estatísticas são todas constantes ao longo do tempo. Uma série estacionária não tem tendência, suas variações em torno de sua média têm uma amplitude constante, e ela muda de forma consistente. Ou seja, seus padrões de tempo aleatório de curto prazo sempre parecem os mesmos em um sentido estatístico. A última condição significa que suas autocorrelações (correlações com seus próprios desvios anteriores da média) permanecem constantes ao longo do tempo, ou de forma equivalente, que seu espectro de potência permanece constante ao longo do tempo. Uma variável aleatória deste formulário pode ser vista (como de costume) como uma combinação de sinal e ruído, e o sinal (se um é aparente) pode ser um padrão de reversão média rápida ou lenta, ou oscilação sinusoidal, ou alternância rápida no signo , E também poderia ter um componente sazonal. Um modelo ARIMA pode ser visto como um 8220filter8221 que tenta separar o sinal do ruído, e o sinal é então extrapolado para o futuro para obter previsões. A equação de previsão de ARIMA para uma série de tempo estacionária é uma equação linear (isto é, regressão) em que os preditores consistem em atrasos da variável dependente ou atrasos dos erros de previsão. Isto é: valor previsto de Y uma constante ou uma soma ponderada de um ou mais valores recentes de Y e uma soma ponderada de um ou mais valores recentes dos erros. Se os preditores consistem apenas em valores atrasados ​​de Y. é um modelo autoregressivo puro (8220 self-regressed8221), que é apenas um caso especial de um modelo de regressão e que pode ser equipado com o software de regressão padrão. Por exemplo, um modelo autoregressivo de primeira ordem (8220AR (1) 8221) para Y é um modelo de regressão simples no qual a variável independente é apenas Y rezagada em um período (LAG (Y, 1) em Statgraphics ou YLAG1 em RegressIt). Se alguns dos preditores são atrasos dos erros, um modelo ARIMA não é um modelo de regressão linear, porque não existe nenhuma maneira de especificar o erro 8222 do último período8217s como uma variável independente: os erros devem ser computados numa base de período a período Quando o modelo é ajustado aos dados. Do ponto de vista técnico, o problema com o uso de erros atrasados ​​como preditores é que as previsões do modelo8217s não são funções lineares dos coeficientes. Mesmo que sejam funções lineares dos dados passados. Assim, os coeficientes nos modelos ARIMA que incluem erros atrasados ​​devem ser estimados por métodos de otimização não-linear (8220hill-climbing8221) em vez de apenas resolver um sistema de equações. O acrônimo ARIMA significa Auto-Regressive Integrated Moving Average. Lags da série estacionada na equação de previsão são chamados quota de termos degressivos, os atrasos dos erros de previsão são chamados de termos de média de quotmoving, e uma série de tempo que precisa ser diferenciada para ser estacionada é dito ser uma versão quotintegratedquot de uma série estacionária. Modelos aleatórios e de tendência aleatória, modelos autoregressivos e modelos de suavização exponencial são todos os casos especiais de modelos ARIMA. Um modelo ARIMA não-sazonal é classificado como quotARIMA (p, d, q) quot model, onde: p é o número de termos autorregressivos, d é o número de diferenças não-sazonais necessárias para a estacionaridade e q é o número de erros de previsão atrasados ​​em A equação de predição. A equação de previsão é construída da seguinte forma. Primeiro, digamos a d ª diferença de Y. o que significa: Observe que a segunda diferença de Y (o caso d2) não é a diferença de 2 períodos atrás. Em vez disso, é a primeira diferença da primeira diferença. Que é o análogo discreto de uma segunda derivada, isto é, a aceleração local da série em vez da sua tendência local. Em termos de y. A equação geral de previsão é: Aqui, os parâmetros de média móvel (9528217s) são definidos de modo que seus sinais são negativos na equação, seguindo a convenção introduzida pela Box e Jenkins. Alguns autores e software (incluindo a linguagem de programação R) os definem de modo que eles tenham sinais de mais. Quando os números reais estão conectados à equação, não há ambigüidade, mas é importante saber qual a convenção que seu software usa quando você está lendo a saída. Muitas vezes, os parâmetros são indicados por AR (1), AR (2), 8230 e MA (1), MA (2), 8230 etc. Para identificar o modelo ARIMA apropriado para Y. você começa por determinar a ordem de diferenciação (D) a necessidade de estacionar a série e remover as características brutas da sazonalidade, talvez em conjunto com uma transformação estabilizadora de variância, como registro ou desinflação. Se você parar neste ponto e prever que a série diferenciada é constante, você ajustou apenas uma caminhada aleatória ou modelo de tendência aleatória. No entanto, a série estacionada ainda pode ter erros autocorrelacionados, sugerindo que alguns números de AR (p 8805 1) e outros termos do número MA (q 8805 1) também são necessários na equação de previsão. O processo de determinação dos valores de p, d e q que são melhores para uma determinada série temporal será discutido em seções posteriores das notas (cujos links estão no topo desta página), mas uma prévia de alguns tipos Dos modelos ARIMA não-sazonais que são comumente encontrados são dados abaixo. Modelo autoregressivo de primeira ordem ARIMA (1,0,0): se a série estiver estacionada e autocorrelada, talvez possa ser predita como um múltiplo de seu próprio valor anterior, além de uma constante. A equação de previsão neste caso é 8230, que é regredida por si mesma atrasada por um período. Este é um modelo 8220ARIMA (1,0,0) constante8221. Se a média de Y for zero, então o termo constante não seria incluído. Se o coeficiente de inclinação 981 1 for positivo e menor que 1 em magnitude (deve ser inferior a 1 em magnitude se Y estiver estacionário), o modelo descreve o comportamento de reversão média em que o valor do período 8217 seguinte deve ser previsto 981 1 vez como Muito longe da média, já que este valor do período 8217s. Se 981 1 é negativo, ele prevê comportamento de reversão média com alternância de sinais, ou seja, ele também prevê que Y estará abaixo do período médio seguinte se estiver acima da média deste período. Em um modelo autoregressivo de segunda ordem (ARIMA (2,0,0)), haveria um termo Y t-2 também à direita e assim por diante. Dependendo dos sinais e das magnitudes dos coeficientes, um modelo ARIMA (2,0,0) pode descrever um sistema cuja reversão média ocorre de forma sinusoidalmente oscilante, como o movimento de uma massa em uma mola sujeita a choques aleatórios . ARIMA (0,1,0) caminhada aleatória: se a série Y não é estacionária, o modelo mais simples possível para isso é um modelo de caminhada aleatória, que pode ser considerado como um caso limitante de um modelo AR (1) no qual o autorregressivo O coeficiente é igual a 1, ou seja, uma série com reversão média infinitamente lenta. A equação de predição para este modelo pode ser escrita como: onde o termo constante é a mudança média de período para período (ou seja, a derivação de longo prazo) em Y. Esse modelo poderia ser ajustado como um modelo de regressão sem intercepção em que o A primeira diferença de Y é a variável dependente. Uma vez que inclui (apenas) uma diferença não-sazonal e um termo constante, esta é classificada como um modelo quotARIMA (0,1,0) com constante. O modelo aleatório-sem-atrasado seria um ARIMA (0,1, 0) modelo sem constante ARIMA (1,1,0) modelo autoregressivo de primeira ordem diferenciado: se os erros de um modelo de caminhada aleatória forem autocorrelacionados, talvez o problema possa ser corrigido adicionando um atraso da variável dependente à equação de predição - - é Ao regredir a primeira diferença de Y em si mesma atrasada por um período. Isso produziria a seguinte equação de predição: que pode ser rearranjada para Este é um modelo autoregressivo de primeira ordem com uma ordem de diferenciação não-sazonal e um termo constante - ou seja. Um modelo ARIMA (1,1,0). ARIMA (0,1,1) sem alisamento exponencial constante e simples: outra estratégia para corrigir erros autocorrelacionados em um modelo de caminhada aleatória é sugerida pelo modelo de suavização exponencial simples. Lembre-se de que, para algumas séries temporais não estacionárias (por exemplo, as que exibem flutuações ruidosas em torno de uma média variando lentamente), o modelo de caminhada aleatória não funciona, bem como uma média móvel de valores passados. Em outras palavras, ao invés de tomar a observação mais recente como a previsão da próxima observação, é melhor usar uma média das últimas observações para filtrar o ruído e estimar com maior precisão a média local. O modelo de suavização exponencial simples usa uma média móvel ponderada exponencialmente de valores passados ​​para alcançar esse efeito. A equação de predição para o modelo de suavização exponencial simples pode ser escrita em várias formas matematicamente equivalentes. Um dos quais é o chamado formulário 8220error correction8221, em que a previsão anterior é ajustada na direção do erro que ele fez: porque e t-1 Y t-1 - 374 t-1 por definição, isso pode ser reescrito como : Que é uma equação de previsão ARIMA (0,1,1) sem constante com 952 1 1 - 945. Isso significa que você pode ajustar um alisamento exponencial simples especificando-o como um modelo ARIMA (0,1,1) sem Constante e o coeficiente estimado MA (1) corresponde a 1-menos-alfa na fórmula SES. Lembre-se que, no modelo SES, a idade média dos dados nas previsões de 1 período anterior é de 1 945. O que significa que tenderão a atrasar tendências ou pontos de viragem em cerca de 1 945 períodos. Segue-se que a idade média dos dados nas previsões de 1 período de um ARIMA (0,1,1) - sem modelo constante é 1 (1 - 952 1). Assim, por exemplo, se 952 1 0,8, a idade média é 5. Como 952 1 aborda 1, o ARIMA (0,1,1) - sem modelo constante torna-se uma média móvel de muito longo prazo, e como 952 1 Aproxima-se de 0, torna-se um modelo de caminhada aleatória sem drift. What8217s é a melhor maneira de corrigir a autocorrelação: adicionar termos AR ou adicionar termos MA. Nos dois modelos anteriores discutidos acima, o problema dos erros auto-correlacionados em um modelo de caminhada aleatória foi consertado de duas maneiras diferentes: adicionando um valor atrasado da série diferenciada Para a equação ou adicionando um valor atrasado do erro de previsão. Qual abordagem é melhor Uma regra de ouro para esta situação, que será discutida com mais detalhes mais adiante, é que a autocorrelação positiva geralmente é melhor tratada adicionando um termo AR ao modelo e a autocorrelação negativa geralmente é melhor tratada adicionando um Termo MA. Nas séries temporais econômicas e econômicas, a autocorrelação negativa surge frequentemente como um artefato da diferenciação. (Em geral, a diferenciação reduz a autocorrelação positiva e pode até causar uma mudança de autocorrelação positiva para negativa). Assim, o modelo ARIMA (0,1,1), em que a diferenciação é acompanhada por um termo MA, é mais freqüentemente usado do que um Modelo ARIMA (1,1,0). ARIMA (0,1,1) com alisamento exponencial constante e constante: ao implementar o modelo SES como modelo ARIMA, você realmente ganha alguma flexibilidade. Em primeiro lugar, o coeficiente estimado de MA (1) pode ser negativo. Isso corresponde a um fator de alisamento maior que 1 em um modelo SES, que normalmente não é permitido pelo procedimento de montagem do modelo SES. Em segundo lugar, você tem a opção de incluir um termo constante no modelo ARIMA, se desejar, para estimar uma tendência média não-zero. O modelo ARIMA (0,1,1) com constante tem a equação de previsão: as previsões de um período anteriores deste modelo são qualitativamente similares às do modelo SES, exceto que a trajetória das previsões de longo prazo é tipicamente uma Linha inclinada (cuja inclinação é igual a mu) em vez de uma linha horizontal. ARIMA (0,2,1) ou (0,2,2) sem alisamento exponencial linear constante: modelos de alisamento exponencial linear são modelos ARIMA que utilizam duas diferenças não-sazonais em conjunto com os termos MA. A segunda diferença de uma série Y não é simplesmente a diferença entre Y e ela mesma atrasada por dois períodos, mas é a primeira diferença da primeira diferença - isto é. A mudança de mudança de Y no período t. Assim, a segunda diferença de Y no período t é igual a (Y t-Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Uma segunda diferença de uma função discreta é análoga a uma segunda derivada de uma função contínua: mede a quotaccelerationquot ou quotcurvaturequot na função em um determinado ponto no tempo. O modelo ARIMA (0,2,2) sem constante prediz que a segunda diferença da série é igual a uma função linear dos dois últimos erros de previsão: o que pode ser rearranjado como: onde 952 1 e 952 2 são o MA (1) e MA (2) coeficientes. Este é um modelo de suavização exponencial linear geral. Essencialmente o mesmo que o modelo Holt8217s, e o modelo Brown8217s é um caso especial. Ele usa médias móveis exponencialmente ponderadas para estimar um nível local e uma tendência local na série. As previsões de longo prazo deste modelo convergem para uma linha reta cuja inclinação depende da tendência média observada no final da série. ARIMA (1,1,2) sem alisamento exponencial linear constante de tendência amortecida. Este modelo está ilustrado nos slides que acompanham os modelos ARIMA. Ele extrapola a tendência local no final da série, mas acha-se em horizontes de previsão mais longos para introduzir uma nota de conservadorismo, uma prática que tem suporte empírico. Veja o artigo em quotPor que a Tendência Damped funciona por Gardner e McKenzie e o artigo do quotGolden Rulequot de Armstrong et al. para detalhes. Em geral, é aconselhável manter os modelos em que pelo menos um de p e q não é maior do que 1, ou seja, não tente se ajustar a um modelo como o ARIMA (2,1,2), pois isso provavelmente levará a uma superposição E quotcommon-factorquot questões que são discutidas em mais detalhes nas notas sobre a estrutura matemática dos modelos ARIMA. Implementação da planilha: os modelos ARIMA, como os descritos acima, são fáceis de implementar em uma planilha eletrônica. A equação de predição é simplesmente uma equação linear que se refere a valores passados ​​de séries temporais originais e valores passados ​​dos erros. Assim, você pode configurar uma planilha de previsão ARIMA armazenando os dados na coluna A, a fórmula de previsão na coluna B e os erros (dados menos previsões) na coluna C. A fórmula de previsão em uma célula típica na coluna B seria simplesmente Uma expressão linear que se refere a valores nas linhas precedentes das colunas A e C, multiplicadas pelos coeficientes apropriados de AR ou MA armazenados em células em outro lugar na planilha.

No comments:

Post a Comment